PRITHWIRAJ PAUL

3869 Miramar St. San Diego, California, USA | +18582419119

p1paul@ucsd.edu | LinkedIn | GitHub

EDUCATION

University of California - San Diego

September 2022 - Ongoing

Master's of Science, Electrical and Computer Engineering (Intelligent Robotics)

Relevant Courses: Sensing and Estimation in Robotics, Planning and Learning - Robotics, Robot Manipulation and Control, Deep Learning - Computer Vision, Safety for Autonomous Systems, Software Foundations, Linear Systems, Data Analysis

Indian Institute of Technology Kharagpur (IIT-KGP)

August 2015 - June 2020

Dual Degree (Master's + Bachelor's), Mechanical Engineering

GPA: 9.24

Relevant Courses: Programming and Data Structures (C, C++), Soft Computing, Robot Dynamics and Kinematics, Dynamics and Control, Non-linear Control, Mechatronics Laboratory (LabVIEW), Systems Reliability

PROFESSIONAL EXPERIENCE

Jacobs School of Engineering, UC San Diego

San Diego, USA

Graduate Teaching Assistant – Sensing and Estimation in Robotics

Jan 2024 – present

Skills – SLAM, Kalman Filter, Computer Vision (CV), Python, Leadership, Public Speaking, University Teaching

- Facilitating student learning in Bayesian filtering, SLAM, Convex Optimization taught skills in probability, linear algebra
- Guiding ~140 graduate students in projects and homework focusing on SLAM. Sensor Fusion, Sensor Calibration, and CV

Wilmington, MA, USA **Symbotic**

Bot Controls Software Engineering Intern

June 2023 – Dec 2023

Project - Developing Real-time Safe Trajectory Planning and Control for SymBot - Line Follower Warehouse Automation Robot Skills - Motion Planning, Optimal Control, Bot Testing, Software Development, Jira, Git, Version Control, C++, Python, Gazebo

- Utilized SimbaSim Gazebo for visualization and analysis of offline turn profiles, gaining insights into bot driving behavior
- Implemented Model Predictive Control with CasADi for online trajectory generation, achieving planning time on the scale of seconds and reducing to milliseconds with a Control Barrier Function - Control Lyapunov Function QP framework
- Validated generated trajectories, yielding a 46% improvement in optimization time and a 10% reduction in turn time versus the baseline method, conducted extensive unit testing and integrated into Symbot's production codebase in C++ as an online API

Indian Space Research Organization

Bengaluru, Karnataka, India September 2020 - August 2022

Project - Alleviating water impact loads on Crew Module through active control during parachute descent phase

Skills - Human Spaceflight, Non-linear Control design, Spacecraft Dynamics, Mathematical Modelling, MATLAB, Simulink • Developed a 6-DOF trajectory simulator in Simulink for a 5-tonne crewed spacecraft, simulating atmospheric re-entry dynamics

• Successfully executed a Bang-Bang controller with Proportional-Derivative action at 100% duty cycle, minimizing propellant usage to 22 kg for a 450 N control force, and ensuring targeted orientation at touchdown within +/- 3° dead band

TECHNICAL SKILLS

Scientist/Engineer SC

Programming Languages: Python, C++, MATLAB

Technologies/Frameworks: PyTorch, OpenCV, ROS, Gazebo, Linux, Git, GitLab, Jira, Simulink, LATEX, NumPy, JAX, Docker

ACADEMIC PROJECTS

Vision-guided Autonomous Navigation using Reinforcement Learning

October 2023 - Present

Skills - Robot Perception, Deep Neural Network, Transformer, CNN, ROS, PyBullet, Hardware-Testing and Deployment, OpenCV Developed a Neural Network model for learning autonomous navigation in Ackermann drive vehicles, achieving over 95%

- accuracy with a reinforcement learning agent trained in a PyBullet and Stable-Baselines3 simulated environment
- Executing Sim2Real pipeline for autonomous navigation Deployed trained RL model using custom C++ ROS node in Nvidia TX2, and benchmarked neural network architectures such as CNN, Transformer, Vision Transformer for image feature analysis

Stochastic Optimal Control for Trajectory Tracking of Differential Drive Robot (GitHub)

April 2023 - June 2023

Skills - Model Predictive Control (MPC), Global Policy Iteration (GPI), Non-linear Control, Python, CasADi

- Formulated a Markov Decision Process for trajectory tracking performance evaluation, using MPC and GPI algorithms, with MPC optimized through CasADi and GPI applied via discretized Value Iteration
- Showcased MPC's real-time robustness and GPI's reduced noise sensitivity on Differential-drive robot model, balancing speed and discretization dependence through tracking performance analysis

Motion Planning in 3D obstacle environments (GitHub)

April 2023 - June 2023

Skills - 3D Motion Planning, A*, RRT*, Heuristic Function, 3D Graph-search, Data Structures and Algorithms

- Implemented collision-checking for safe robot navigation in 3D mazes, evaluating custom-designed weighted-A* and RRT, **RRT*** algorithms; RRT outperformed by 30% in speed and memory efficiency, whereas A* excelled in path quality
- Analyzed algorithms based on expanded nodes, heuristic methods (Euclidean, Manhattan), highlighting trade-offs in complexity and efficiency, and graph creation efficiency in sampling-based approaches

Skills - Motion Planning, A*, Data Structures and Algorithms, C++, Unit Testing, Software Development, CMake

- Crafted and deployed a C++ navigation API using OpenStreetMap data, significantly enhancing real-time route planning
- Enhanced navigation accuracy and performance by implementing the A* algorithm through effective API integration
- Conducted extensive unit testing with Google Test for high-precision vehicle positioning using RTK GPS system integration

ROS-Based Indoor SLAM and Mapping on Nvidia Xavier Autonomous Racecar

December 2022 - May 2023

Skills - ROS, Hardware Integration and Testing, Sensor Fusion, SLAM, Point Cloud, OctoMap, Voxel Mapping, C++, Gazebo

- Used ROS, Intel RealSense, and Hokuyo 2D Lidar: Conducted hardware calibration and testing; verified functionality in Rviz
- Utilized **Hector mapping** with lidar data and generated real-time **2D occupancy grids**; created octomaps using **Octomap ROS package** and **point cloud** and voxel maps using **Voxblox**, enhancing sensor fusion and data integration
- Utilized Gazebo Car Models and RealSense: Enabled detailed testing and texture mapping for efficient robot path planning

Fast Class-Based Neural Style Transfer (NST) (GitHub)

April 2023 - June 2023

Skills - Computer Vision, Deep Learning, PyTorch, Semantic Segmentation, RCNN, Encoder-Decoder, Neural Style Transfer (NST)

- Developed Real-Time Style Transfer Pipeline: Achieved 25 fps on Tesla T4 GPU using a custom 1.64MB Fast NST model
- Boosted Semantic Segmentation with Fast-SCNN: Achieved 68.0% Mean IoU on Cityscape at 123.5 fps, refining style transfer
- Optimized **Style Transfer Using pre-trained VGG16**: Implemented improved content and style loss (**Gram matrix**) for qualitative style transfer studies on **CityScape** and **PascalVOC** datasets

Visual Inertial SLAM using Extended Kalman Filter (EKF) (GitHub)

February 2023 - March 2023

Skills - VSLAM, Kalman Filter, Sensor Fusion, IMU and Camera Calibration, SE(3) Kinematics, Map Accuracy, OpenCV

- Conducted **sensor fusion** for data synchronization between **IMU** and **stereo camera**, implementing **EKF** for real-time positioning and orientation updates of autonomous car pose using **SE(3)** kinematics and landmark locations
- Analyzed motion and observation model noise sensitivities, achieving 95% environment mapping accuracy through simultaneous car pose and landmark correction using observation model Jacobians.

Improvement of Online Camera Calibration using Visual Servoing

April 2023 - June 2023

Skills - 7-DOF Panda Robot, Pose Estimation, Controller Design, PyBullet, OpenGL, Roboticstoolbox-Python

- Enhanced online camera calibration using Image Jacobian and DREAM Neural Network for camera-to-robot pose estimation
- Implemented **PnP** and **Forward Kinematics** estimating noisy camera pose with DREAM, camera intrinsics, and joint angles
- Computed Image Jacobian for each joint to map joint positions in virtual camera pixel space using **OpenGL** library
- Designed a closed-loop Proportional controller and improved camera angle error by > 90% and position error by > 95%

Course Projects on Machine Learning

October 2022 - December 2022

- Programmed a MATLAB image classification problem using Bayesian Parameter Estimation and achieved 10% algorithm error
- Performed Speech Recognition on 430,000 non-text inputs in Python using the **Viterbi algorithm** and **Hidden Markov Model**
- Developed the **Hangman game** in Python predicting the next best guess letter in a word based on the previous letter guesses

Analyzed Max log-likelihood of bigram and mixture-model word distributions in English with Statistical Language Modeling

• Constructed a **Linear Regression** model in Python predicting the stock market NASDAQ index - assumed **4-gram model** using training data from the year 2000 and achieved a 53% lower RMS prediction error in test data of the year 200